Matematica del continuo

Formula di Taylor e McLaurin

Sia y = f(x) una funzione continua e derivabile definita in (a, b), con derivate continue fino all'ordine k ( si dice che f(x) una funzione di classe ). A tale funzione possibile associare un polinomio nel punto x0 (a,b,) cos definito:

dove f alla k(x0) indica la derivata di ordine k di f(x) valutata in x0.

Per definizione si pone 0! = 1

Il polinomio Pk(x) si chiama polinomio di Taylor associato alla funzione y = f(x) e corrisponde allo sviluppo di f(x) arrestata all'ordine k. Tale sviluppo vale in tutti i punti dell'intervallo (a,b) in cui la funzione definita. In sostanza il polinomio precedente costituisce una approssimazione di f(x) nell'intorno di x0 . Si tratta ora di valutare l'errore che si commette in x0 , sostituendo f(x) con il polinomio di Taylor Pk(x).

Teorema: Se y = f(x) definita in (a,b) di classe ck ed dotata anche di derivata di ordine k+1 in (a,b), comunque si fissino x0 e x in (a,b) esiste un punto tale che in modo che l'errore sia dell'ordine:

nel caso in cui il punto x0 sia nullo si ottiene la formula di McLaurin:

Vediamo alcuni esempi:





Dagli sviluppi in serie di y = senx, y = cosx, e y = ex si deduce immediatamente la forma esponenziale di un numero complesso . Se poniamo e lo sostituiamo in ex otteniamo:

Come si pu notare il primo termine tra parentesi lo sviluppo di cos , mentre il secondo termine lo sviluppo di sin . Siccome sin , cos ed e approssimano nel loro sviluppo un valore ben preciso in tutti i punti, in generale si pu scrivere:

questa equazione la forma esponenziale di un numero complesso.

Vediamo alcuni esempi di come tali successioni giustificano alcuni limiti notevoli:


























Tutto quanto riportato in questa pagina a puro scopo informativo personale. Se non ti trovi in accordo con quanto riportato nella pagina, vuoi fare delle precisazioni, vuoi fare delle aggiunte o hai delle proposte e dei consigli da dare, puoi farlo mandando un email. Ogni indicazione fondamentale per la continua crescita del sito.